If it's not what You are looking for type in the equation solver your own equation and let us solve it.
-4x^2+3x+8=0
a = -4; b = 3; c = +8;
Δ = b2-4ac
Δ = 32-4·(-4)·8
Δ = 137
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{137}}{2*-4}=\frac{-3-\sqrt{137}}{-8} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{137}}{2*-4}=\frac{-3+\sqrt{137}}{-8} $
| 1/3x-6=x | | 4x+2x-10+82=180 | | 15x+6=3(5x+3)-3 | | 15+9p=9p | | 2x+3x-4=15 | | 7(m+4)-3=70-10m | | 8x-5=6x-25 | | 18+6q=22q-14 | | 2q=7q-81 | | 12+1/3x=7 | | 8x+11=4x+14= | | 17x+4+9x-6=180* | | 180-14-1=x | | 2=(4x+108) | | 26/14=x | | 14-1/14=x | | 2y+31=0 | | 70x20=70x | | E-0.908x=7 | | 1014=650(1+0.14t) | | 3((x+1)-5=5x-2 | | C=7x-(2x-5) | | 5x+18=42 | | X=36y*4-3 | | 1=9.8x | | 159=51-u | | 159=5-u | | 3y-2+y+8=y+7+y+8 | | 5x-255=0 | | 220-y=29 | | -u+162=90 | | 2n^2+18n+104=0 |